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A B S T R A C T

As the number of clients for federated learning (FL) has expanded to the billion level, a
new research branch named secure federated submodel learning (SFSL) has emerged. In SFSL,
mobile clients only download a tiny ratio of the global model from the coordinator’s global.
However, SFSL provides little guarantees on the convergence and accuracy performance as the
covered items may be highly biased. In this work, we formulate the problem of client selection
through optimizing unbiased coverage of item index set for enhancing SFSL performance. We
analyze the NP-hardness of this problem and propose a novel heuristic multi-group client
selection framework by jointly optimizing index diversity and similarity. Specifically, heuristic
exploration on some random client groups are performed progressively for an empirical
approximate solution. Meanwhile, private set operations are used to preserve the privacy of
participated clients. We implement the proposal by simulating large-scale SFSL application in a
lab environment and conduct evaluations on two real-world data-sets. The results demonstrate
the performance (w.r.t., accuracy and convergence speed) superiority of our selection algorithm
than SFSL. The proposal is also shown to yield significant computation advantage with similar
communication performance as SFSL.

. Introduction

Recent years have witnessed the widespread and broad adoption of the federated learning (FL) setting for collaboratively building
ata-driven machine learning systems (Lim, Luong, Hoang, et al., 2020; Yang, Liu, Chen, et al., 2019). As shown in the left branch
f Fig. 1, FL allows distributed users to train the downloaded full model on their sensitive data and to upload their local updates
o the cloud for global aggregation, achieving model learning and privacy-preserving simultaneously (Hao, Li, Luo, et al., 2019;

ei, Li, Ding, et al., 2020; Yin, Zhu, & Hu, 2021). Such a paradigm has successfully supported many applications, in particular the
ecommendation systems for shopping (Lai, Dai, Zhu et al., 2021; Tran, Bao, Zomaya, et al., 2019), traveling (Guo, Liu, Cai, et al.,
021), news (Qi, Wu, Wu, et al., 2020), etc.

However, the traditional FL design is ill-suited for large-scale distributed training scenarios where there may be billions of users
nd millions of goods (a.k.a. products or items). For example, as reported in the recommendation practice of Taobao (owned by
libaba), the global model can be 134 GB when the embedding matrix dimension is 18 for 2 billion goods. Performing local training
nd iteratively local–global model transmission on such a scale of data is unacceptable. Secure federated submodel learning (SFSL)
s thus proposed to relieve this tension (Niu, Wu, Tang, et al., 2020). The basic idea is that, for a specific user (client in FL), only
he model parameters (e.g., for inferring sports news preference) related to its local data (e.g., clicking a series of news on sports
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Fig. 1. Frameworks of FL and SFSL with typical supported applications. Briefly, SFSL is proposed to mitigate FL’s large communication and training costs
on billion-scale training tasks. Yet, randomly selecting users for training generally yields incomplete item coverage, thus biased training, which limits model
performance and convergence speed.

star) are tuned during local training on the full model. Hence, one can simply extract a submodel from the full model for each client
given its local data characteristics and only transmit small submodels (1.99% of the full model’s size Niu et al., 2020) for efficiency,
as depicted in the right branch of Fig. 1.

As we all know, communication capacity is the main bottleneck of collaborative training in billion-level FL applications. Wireless
and end-user Internet connections generally operate at a lower rate than links within or between data centers and can be expensive
and unreliable. The main overhead in communication is the transmission of the intermediate parameters. Regarding communication
optimization, many works have given enlightening strategies and schemes (Ji, Jiang, Walid, & Li, 2021; Konečnỳ, McMahan, Yu,
et al., 2016; Wu, Wu, Lyu et al., 2022). On achieving the same performance, the communication load has a positive linear relationship
with the number of communication rounds. Reducing the number of communication rounds by improving the sampling efficiency
can significantly reduce the communication load. In addition, in the federal learning scenario involving hundreds of millions of
clients, the aggregation capacity of each round is limited, and the number of clients allowed to participate in the communication
round in each round is also limited. These considerations have led to great interest in heuristic sampling. In addition, the clients
sampling problem caused by super large scale FL is more challenging than the common FL, and the privacy protection requirement
2
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in clients is also more prominent. The new challenges cannot be solved simply by increasing computing resources or introducing
optimization methods. It needs a new perspective to analyze and design more sound solutions.

Our method is based on the observation that the quality of participating clients is evaluated under the scenario of partial client
articipation. Selecting clients with high data diversity to participate in aggregation can lead to better training quality, thus speeding
p the training process. We claim that some clients will have ‘‘more information’’ updates in any communication round than others.
he training program will benefit from taking advantage of this fact and ignoring some worthless updates. In particular, we propose
pre-client sampling scheme to identify the client with the best local information coverage before any given communication training

ycle. Our scheme works by maximizing the coverage of sets and then translates into reducing the number of communication wheels.
s far as we know, this method has not been considered before.

Since generating a dedicated submodel a user requires its sensitive access histories (i.e., an index set for its related items in the
ull item set to specify the position of its submodel), SFSL utilizes a ‘randomly asking more’ selection strategy to avoid ruining

the privacy tenet of FL (Niu et al., 2020). Basically, it allows a user to generate a randomized index set to replace and protect the
real index set when requesting a submodel for local training. Furthermore, it employs random sampling when selecting clients in
each FL training round without profiling them for merit-aware selection (Zeng, Zhou, Guo, et al., 2021). Such a random selection
strategy means that the index sets of the selected clients may have large redundancy. As a result, although designed for model
interaction efficiency, SFSL provides little guarantees on the convergence and accuracy performance as the covered items
may be highly biased. For example, it may involve a large portion of clients who are fond of sports but with little local training
on food data, limiting the recommendation accuracy in the latter category.

The client selection/sampling techniques in traditional FL, either contribution-driven (Chen, Horvath, & Richtarik, 2020; Cho,
Wang, & Joshi, 2020; Ribero & Vikalo, 2020) or capacity-sensitive (Chai, Ali, Zawad, et al., 2020; Lai, Zhu, Madhyastha et al., 2021;
Nishio & Yonetani, 2019), are ineffective in the SFSL context as relying on independent full model evaluation for the merit of each
client. For example, the contribution is measured by the parameter differences between the local model and the global model, and
then the updates from clients with higher contributions are selected; Clients with faster computation responses are favored during
training in Chai et al. (2020) to attain fast updates in each round. However, sending the large full model to each client for evaluation
is unaffordable in billion-scale learning scenarios of SFSL. Meanwhile, high contribution and capacity users may yield redundant
training on index sets learned multiple times by other clients submodels.

This work is then devoted to studying the client selection challenges and performance gains for SFSL. For this, we first formulate
the client selection problem as optimizing the unbiased coverage of the selected clients’ index sets. That is, we aim to cover as much
heterogeneous item knowledge for training during selection. This optimization problem is NP-hard as it proved to be the boolean
combination of two traditional NP-hard problems. The privacy of local index sets makes it more complex as we cannot directly
assess the merit of a pair of index sets by requiring their actual values.

To relieve this pitfall, we propose a novel framework based on heuristic multi-group selection. Here a group denotes a sampling of
a certain number of clients during each training round. Basically, considering the no-privacy situation, we cast the best client subset
selection in multiple training rounds as a variant of the secretary problem (Ferguson, 1989). An empirical approximate solution can
then be found by performing multiple group sampling and group merit estimations. Further, to attain the estimations privately, we
divide a group of clients into small teams and use private set operations to measure inter-team similarity and diversity. We evaluate
the proposal with large-scale simulations on real-world datasets (over 50 thousand samples) and compare it with SFSL on model
performance and training overheads.

Our contributions are summarized in the following three folds.

• We identify the limitations of SFSL on convergence and formulate the problem of client selection through optimizing
unbiased coverage of the item index set. We analyze the NP-hardness of this problem and elaborate on the complexity incurred
by inherent privacy requirements.

• We propose a novel heuristic multi-group client selection framework for enhancing SFSL performance. It leverages the
private set intersection and union techniques to securely measure a (group) selection’s set coverage capacity from the aspects
of diversity and similarity. By jointly favoring both aspects in each selection round, we present an approximate empirical
solution for the problem.

• We implement the proposal by simulating large-scale SFSL application in lab environment and conduct evaluations on three
real-world datasets. The results demonstrate the performance (w.r.t., accuracy and convergence speed) superiority of our
framework over SFSL. It is also shown to yield significant computation reduction with similar communication overhead as
SFSL.

The rest of this paper is organized as follows. The related work is summarized in Section 2. In Section 3, we describe the
reliminaries and formally state the client selection problem of SFSL and its challenges. The overview of our system is in Section 4
nd the design details of three heuristic sampling algorithms are introduced in Section 5. Section 6 gives the experiments settings
nd evaluation results. We conclude this work in Section 7.

. Related work

There are several data/client selection methods proposed for FL (Alain, Lamb, Sankar, et al., 2015; Katharopoulos & Fleuret,
3
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the adoption problems in FL (Fraboni, Vidal, Kameni, & Lorenzi, 2022; Ji et al., 2021; Khodadadian, Sharma, Joshi, & Maguluri,
2022; Luo, Xiao, Wang, Huang, & Tassiulas, 2022). Banabilah, Aloqaily, Alsayed, et al. (2022) give an in-depth overview of FL
applications and trends in different application scenarios. It also discuss the future open directions and challenges in FL. Wu, Deng
and Li (2022) propose an anomaly detection classification model that incorporates federated learning and mixed Gaussian variational
selfencoding networks which can effectively address network attack and sample dissimilarity. In contrast, few works deal with the
data selection problem for billion scales FL (Pu, Chen, Yun, et al., 2020; Tuor, Wang, Ko, et al., 2020). As far as we know, the
current research work on FL sampling is mainly divided into two fields: the first branch focuses on the intermediate training results
(e.g., during every round of training). The second branch concentrates on the non-training intermediate results of clients (e.g., before
every round of training).

(1) The first branch sampling methods have been studied extensively in the last few years. Luo et al. (2022) design an adaptive
lient sampling algorithm that tackles both system and statistical heterogeneity to minimize the wall-clock convergence time. Allen-
hu, Qu, Richtárik, et al. (2016) propose a novel non-uniform sampling that selects each coordinate with a probability proportional
o the square root of its smoothness parameter. Stich, Raj, and Jaggi (2017) propose an efficient approximation of gradient-based
ampling, based on safe bounds on the gradient, which is generic and can easily be integrated into existing algorithms. Ribero
nd Vikalo (2020) model the progression of the global model’s weights and then derive an optimal sampling strategy for selecting
subset of clients with significant weight updates. Cho et al. (2020) quantitatively analyze how biased clients sampling affects

he convergence speed, and selects the clients with higher local loss as the training clients to achieve faster convergence of the
lobal model. Chen et al. (2020) construct important client selection by limiting the number of clients whose updates are sent back
o the cloud server. Only those clients with important updates are allowed to communicate with the server. Although the above
ork proposes an efficient sampling mechanism, they not only do not consider the problem of client privacy leakage but also do
ot consider the problem of incompatibility in large-scale scenarios. Their most fatal deficiency is that they are all based on the
ntermediate results of training, which cannot be satisfied in our application.

(2) The second branch mainly exploits clients statistics, such as label distribution (Zeng et al., 2021), computing capacity (Nishio
Yonetani, 2019), training overhead (Chai et al., 2020) et al. Nishio and Yonetani (2019) actively manage clients according to their

omputing resource conditions and solve the problem via a deadline-based approach that filters out slowly responding clients. It
llows the server to aggregate as many client updates as possible and accelerates the performance improvement of the global model.
hai et al. (2020) propose a layer-based FL clients sampling system, which divides clients into different layers according to their
raining time and selects clients from the same layer in each round of training. Lai, Zhu, Madhyastha et al. (2021) propose the
esign of Oort, which gives priority to those clients who have the data that can provide the most significant utility in improving the
ccuracy of the model and have strong training ability. However, these efforts do not consider maximizing the training efficiency
hen only part of the client-side data evaluation can be obtained. In our scenario, only a few clients can participate in training
very round. The above methods cannot be used to evaluate the quality of all clients.
Limitations. On the one hand, the above two branches’ methods are based on evaluating the results of local training, which

further needs to send the full global model to each client. Hence, in SFSL, the schemes mentioned above cannot be directly used
as distributing the global model goes against its design tenet for efficiency (as depicted in Fig. 1). In addition, evaluating client
contributions one by one would violate local privacy laws since each client’s data is sensitive. On the other hand, In conventional FL,
the existing similarity-based mechanisms are typically divided into two categories: (1) evaluating data contents and (2) evaluating
data embedding feature vectors. There are no FL similarity-based sampling schemes that can be directly implemented in SFSL because
of higher privacy and security requirements in SFSL. SFSL protocol constraints differ from FL’s base setup for similarity calculation
methods. On the one hand, clients are not allowed to directly transmit data or verify each other’s data under SFSL. On the other
hand, all intermediary results exchanges must take place through the honest-but-curious cloud coordinator, which means they will
not diverge from the prescribed protocol while being curious about others’ secrets and wondering to know everything they can
about them.

3. Problem statement

We present some preliminary knowledge and the problem formulation in this section. Some challenges are extracted from the
ormulation to motivate dedicated designs.

.1. Preliminaries

This work considers billion-scale FL applications, e.g., recommendation service (Boratto, Fenu, & Marras, 2021; Gómez, Boratto,
Salamó, 2022; Hu, Li, Shi, et al., 2020) in e-commerce platforms like Taobao, Amazon, etc. As shown in Fig. 1, the general goal

s to maintain a model that can recommend users items (e.g., products, points of interest, news) according to their latest activities.
he underlying privacy requirement is that the comprehensive and true user access histories on these platforms are sensitive and
hould be kept to users themselves at local (Guo et al., 2021; Lai, Dai, Zhu et al., 2021; Tran et al., 2019), making local training
nd global aggregation a natural choice. Formally, the full global model is expressed as a two-dimensional matrix 𝐖𝑚×𝑑 (𝑚 is the

number of users/clients and 𝑑 is the number of items/products). Let  = {1, 2,… , 𝑑} denote the full index set of items in 𝐖 and  (𝑖)

denote the real index set (i.e., the items that s/he has clicked or accessed) of the 𝑖th client. We use 𝑡 to represent clients selected by
the cloud server to take part in the 𝑡th training round, and use  (𝑡) to denote the union of the clients’ index sets. As a convenience,
4
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Table 1
Frequently used notations.
Notation Description

𝑇 The total communication rounds
𝑛 The number of clients in each round
𝐾 The number of sampling groups in each round
𝑟 The number of clients in every team
𝐖,𝐖∗ The global model, the optimal global model
𝐖 The submodel w.r.t., index set 
𝑘
𝑡 (𝑞) The clients set of the 𝑞th team in the 𝑘th sampling of the 𝑡th training round

∗
𝑡 The optimal client selection in the 𝑡th round

 (𝑖) The real index set of the 𝑖th client
̂ (𝑖) The randomized index set of the 𝑖th client
 (𝐶) The union index set of client set 𝐶
𝑠𝑖𝑚𝑗

𝑘 The similarity of the 𝑗th pair of teams in the 𝑘th group sampling.
𝑛𝑤 The size of sliding window

Fig. 2. A toy example on unbiased coverage selection of clients. Wherein each row indicates the items’ access histories of a client, and the corresponding indices
of the items construct the index set.

3.2. Problem formulation

With carefully client selection, we essentially try to optimize the performance gain of the global model during each round of
local training, which can be represented as:

𝑎𝑟𝑔𝑚𝑎𝑥𝑘𝑡 (𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝐖𝑡+1|𝑘
𝑡 ) − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝐖𝑡|∗

𝑡−1)). (1)

In the 𝑡th round, each client in 𝑡 performs local training on dedicated submodel of 𝐖𝑡 and the server aggregates their submitted
gradients to attain an updated global model 𝐖𝑡+1. However, as we have already identified in Section 2, assessing the accuracy
gain in Eq. (1) requires sending the large 𝐖𝑡 or dedicated submodel to every client. Both would incur tremendous communication
overheads, while the latter choice would unavoidably break the privacy of an individual’s index set.

As an alternative, we change to ask what are the most beneficial data for training 𝐖. Ideally, from the perspective of centralized
model training, samples that cover as many labels evenly are favored as they facilitate comprehensive knowledge gain for the
inference tasks. Otherwise, if the covered labels are small, the overall performance is bad; If the covered labels have different
amounts, the inference performance on labels would be very different. Here, we introduce the concept of unbiased coverage to
denote such an expected property. From the view of set operations, unbiased coverage optimization can be further decomposed
into maximizing the size of the union set (i.e., diversity) and minimizing the size of the intersection (i.e., similarity), as
illustratively shown in Fig. 2. Hence, the SFSL client selection problem in Eq. (1) transforms to:

𝑎𝑟𝑔𝑚𝑎𝑥𝑘𝑡 (𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦(𝑘
𝑡 ) − 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑘

𝑡 ))

(
𝑛
⋃

 (𝑖) −
𝑛
⋂

 (𝑖)), 𝑖 ∈ 𝑘
𝑡 .

(2)
5
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Fig. 3. An overview of heuristic multi-group selection framework. For brevity, we use MaxUtil to represent MaxDiv+MinSim.

3.3. Challenges analysis

The problem described by Eq. (2) is an NP-hard problem. Specifically, the (𝑚𝑎𝑥 𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦(𝑘
𝑡 ))-problem can be reduced from the

classic Maximum Set Coverage (MSC) problem (Chekuri & Kumar, 2004), where a solver tries to find a group of subsets to cover
the largest number of distinct elements. Meanwhile, the (𝑚𝑎𝑥 − 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑘

𝑡 ))-problem can be reduced from the classic Weighted
K-clique problem (Vassilevska, 2009), where a subset of nodes in a graph with the minimum inner connections is expected. According
to the Boolean Hierarchy theory (Cai, Gundermann, Hartmanis, et al., 1988), their additional combination is still NP-hard.

Another challenge is that measuring the union or intersection of clients’ index sets, as requires the real item indices, would
implicitly cause privacy leakage to them. How to effectively gauge a selection’s properties is important yet non-trivial. For the same
reason, the general greedy-based approximate solution is not appropriate to be applied here.

4. Overview

The framework of our proposal is shown in Fig. 3. It mainly contains three key components: MinSim, MaxDiv, and MaxUtil, which
denotes MaxDiv+MinSim. First of all, the server starts the sampling module, which mainly completes peer sampling 𝐾 groups of
users. Each group is composed of 𝑞 teams. Then the server runs private set operation to get the index union of each group of users,
mainly to get the index union of 𝑞 teams first and then to get the index union of each group of users through merging. The server will
index the similarity and coverage of each set of users, which is realized by MinSim and MaxDiv, respectively. The similarity value
of each group of users is mainly to calculate the average similarity between 𝑞 teams in each group to approximately replace the
similarity of this group of clients. Unlike the similarity calculation, the coverage calculation is simpler because each group of clients’
coverage refers to the set’s size. In the MaxUtil entity, the data quality of each group of clients is evaluated comprehensively by
combining similarity and coverage. Then, according to the request of a selected group of clients, the server sends the corresponding
sub-model to the group of clients and caches the group’s client ID, and the corresponding index set union in the sliding window.

In particular, we adopt a multi-round group sampling strategy to solve the NP-hard problem, akin to the secretary problem. A
typical secretary problem has 𝑁 rankable applicants (groups of clients) arrive in random order. The interviewer (server) tries to make
the decision on the acceptance (selection) of an applicant after interviewing (evaluating the utility of unbiased coverage property)
immediately. Fortunately, online solutions can find the best secretary with probability 1/e. The server continuously generates a
sampling group, calculates the utility of the first N/e groups, and finds the first group with a utility beyond the maximum utility
observed so far. This way, the selected group shall have a utility within a 1/e approximate ratio to the global best utility. However,
this naive strategy is problematic in the SFSL settings as the number of candidate groups 𝑁 =

(𝑚
𝑛

)

can be huge. Considering this, we
propose to use multi-round random sampling to attain an approximate empirical solution. Specifically, given the active clients, which
shall be much smaller than 𝑚, in each round, we first perform 𝐾 rounds of random group sampling according to the budget of the
server. Then we use sampling to find the best utility among the 𝑘 groups and use this sampled client set as the final selection.

In addition, to ensure the privacy of clients’ index sets, the server implements a private set protocol for accessing local data.
Briefly, the cloud server uses the Private Set Union (PSU) (De Cristofaro, Gasti, & Tsudik, 2012) and Private Set Intersection
(PSI) (De Cristofaro & Tsudik, 2010) techniques to calculate the diversity and similarity of a group of clients. The historical best
selection in each round is cached, and we use a 𝑛𝑤-size sliding window to evaluate the inter-round diversity and similarity.

We now present the design overview with heuristic selection in Algorithm 1. There is a brief description of SFSL, showcasing the
basic SFSL process and retaining the necessary security and privacy properties, following which the heuristic mechanism is discussed.
In each communication round of SFSL, the cloud server first selects 𝐾 groups clients because it is impractical to evaluate one billion
clients in one communication round. There is a remarkable search space for finding the optimal set of clients in an undirected graph
6
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of one billion clients. To simplify the problem, we divide it into sub-problems to approximate the optimal solution: partitioning into
𝐾 groups clients. Next, the cloud server launch MinSim (Algorithm 2), MaxDiv (Algorithm 3) or MaxDiv+MinSim (Algorithm 4) to
determine which group has the largest difference value among 𝐾 groups of clients. These group clients are saved as ∗

𝑡 , and the
union sets associated with ∗

𝑡 are also memorized as ∗
𝑡 , also Stored on the cloud server cache. The purpose of saving the selected

clients and the corresponding union sets for each round is to ensure that we not only consider the coverage diversity of clients
within a round but also calculate the coverage diversity between clients among rounds. This ensures that clients’ local data overlap
as small as possible. In other words, in multiple rounds of client selection, the union set of user local data can cover as many labels
evenly, and the global model indexes to be updated are as many as possible.

Regarding the privacy protection of real indexing, a chosen client determines its real index set based on its local data, specifying
the index of its required submodel. For example, if the goods IDs of a Taobao user include 1, 2, 4, then he/she requires the first,
second, and fourth rows of the embedding matrix for goods IDs, further implying that the real index set should contain 1, 2, 4.
Then, the cloud server launches PSU to obtain the union of the chosen clients’ real index sets while keeping each client’s real index
set secret. The union is delivered to live clients to generate randomized index sets with customized LDP guarantees against the
cloud server. Each live client will use its randomized index set, rather than its real index set, to download and securely upload the
submodel update. Upon receiving the randomized index set from a client, the cloud server stores it for later usage and returns the
corresponding submodel and training hyperparameters to the client.

Depending on the intersection of the real and randomized index sets (i.e., the succinct index set), the client extracts a succinct
submodel and prepares involved data as the succinct training set. For example, if a Taobao user’s real index set is 1, 2, 4, and his/her
randomized index set is 2, 4, 6, 9, he/she receives a submodel with the row indices 2, 4, 6, 9 from the cloud server, but just needs
to train the succinct submodel with the row indices 2, 4 over his/her local data involving the goods IDs 2, 4. After training under
the preset hyperparameters, the client obtains the update of the succinct submodel. Then, it prepares the submodel update to be
uploaded with the randomized index set by adding the update of the succinct submodel to the rows with the succinct indices and
padding zero vectors to the other rows.

𝐖(𝑡+1)
𝑗 = 𝐖(𝑡)

𝑗 +

∑

𝑖∈∗𝑡
∇𝐖(𝑡+1)

𝑗 (𝑖)
∑

𝑖∈∗𝑡
𝑥𝑖𝑗

, 𝑗 ∈ ∗𝑡 (3)

𝐖(𝑡+1)
̂ (𝑖)

(𝑖) = 𝐖(𝑡)
̂ (𝑖)

(𝑖) − 𝜎 ⋅ ∇𝐖(𝑡)
̂ (𝑖)

(𝑖) (4)

Algorithm 1 Client selection with heuristic scheme

Input: 𝐾, 𝑘
𝑡 , 𝑇 , 𝑛

utput: 𝑊∗
1: Initializes 𝑊 randomly
2: for each communication round t = 1, 2,…,𝑇 do
3: for k = 1, 2,…,𝐾 do
4: Randomly select 𝑛 clients to get 𝑘

𝑡

5: Use the PSU technique to attain  (𝑘𝑡 )

6: end for
7: Perform 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 2, 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 3, and 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 4, and obtain ∗

𝑡 and the corresponding index set  (∗𝑡 ), and cached in server
respectively.

8: Deliver the union  (∗𝑡 ) to every client in ∗
𝑡

9: /*Client 𝑖′𝑠 local process (Lines 10–13)*/
10: Determine its randomized index set ̂ (𝑖) based on the local data and  (∗𝑡 )

11: Uses ̂ (𝑖) to download the submodel 𝑊 (𝑡)
̂ (𝑖)

from the server
12: Perform local training and calculate the update using Eq. (4)
13: Upload ∇𝑊 (𝑡+1)

̂ (𝑖)
(𝑖) to the cloud server for securely aggregation

14: for every index 𝑗 ∈  (∗𝑡 ) do
15: Count the number of clients that have index 𝑗 as ∑

𝑖∈∗𝑡
𝑥𝑖𝑗 (𝑥𝑖𝑗 = 1 if the i-th client has index 𝑗)

16: Obtain the sum of weighted updates ∑

𝑖∈𝐶∗
𝑡
∇𝐖𝑗 (𝑖) and calculate the global update of 𝐖(𝑡+1)

𝑗 with Eq. (3)
17: end for
18: end for

Then, the cloud server initiates the PSU algorithm to obtain every group of clients’ union of real index sets while keeping client
ndex sets confidential. Upon receiving the union, every client utilizes it to generate random index sets and launch tunable local
ifferential privacy (LDP). Each client will use these random index sets to download submodels and securely upload updates to
ubmodels.
7
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5. Client selection algorithms

5.1. Similarity minimization

We introduce the MinSim module. Similarity-based measurement mechanisms have many applications across research fields,
ncluding distance measurement between data sets. It is the most commonly used algorithm in the broad field of artificial intelligence.

𝐽 (𝑐𝑖, 𝑐𝑗 ) =
|𝑐𝑖 ∩ 𝑐𝑗 |
|𝑐𝑖 ∪ 𝑐𝑗 |

(5)

In terms of similarity-based applications, the most commonly used solution is the Jaccard coefficient metrics (Niwattanakul,
ingthongchai, Naenudorn, et al., 2013), which means the clients’ data is processed as a set, and the Eq. (5) is used to compute the
imilarity of set 𝑐𝑖 and set 𝑐𝑗 . In this procedure, the most significant step is obtaining the intersection of the data of two clients in a
onfidential manner. In addition, we turn our attention to PSI, a problem within the broader field of secure computation. The goal
f PSI is to design a protocol by which client 𝑖 and client 𝑗 obtain the intersection 𝑐𝑖 ∩ 𝑐𝑗 , under the following privacy restriction:
he protocol must not reveal anything about items’ index that is not in the intersection. But in SFSL, we need to protect the items’

ndex of the intersection of two clients themselves, not the items other than the intersection. To solve the privacy of intersection
𝑖 ∩ 𝑐𝑗 , we split a group of clients into 𝑛∕𝑟(≥ 2) small teams and then determine the similarity between all teams, 𝐶𝑘

𝑡 (𝑞) represents
th team real index union sets in 𝑘th group in round 𝑡. This segmentation strategy can also satisfy the following two basic privacy
rinciples:

• Principle 1: The cloud server cannot ascertain that an item in the intersection belongs to some client.
• Principle 2: The cloud server cannot ascertain that an item in the intersection does not belong to some client.

For example, in Taobao e-commerce scenario, if client 𝐴’s real index set is {1, 2, 4}, client 𝐵’s real index set is {1, 5, 6}, client 𝐶 ’s
eal index set is {3, 4, 7}, client 𝐷’s real index set is {4, 7, 8}. Assuming in 𝑡th training round, the total number of groups 𝐾 is 1 and the
otal number of teams 𝑟 is 2, then we can consider 𝐴 and 𝐵 as 𝑡𝑒𝑎𝑚1 and 𝐶 and 𝐷 as 𝑡𝑒𝑎𝑚2. Consequently, 𝑡𝑒𝑎𝑚1 = 𝐴∪𝐵 = {1, 2, 4, 5, 6}
nd 𝑡𝑒𝑎𝑚2 = 𝐶 ∪𝐷 = {3, 4, 7, 8}. Therefore, the intersection between 𝑡𝑒𝑎𝑚1 and 𝑡𝑒𝑎𝑚2 is {4}. It is easy for the cloud server to know
hat {4} exist in both 𝑡𝑒𝑎𝑚1 and 𝑡𝑒𝑎𝑚2, but according to principle 1, the cloud server cannot ascertains that {4} belongs to client 𝐴
r client 𝐵 (resp., client 𝐶 or client 𝐷), and according to principle 2, the cloud server cannot ascertain that {4} does not belong to
lient 𝐴 or client 𝐵 (resp., client 𝐶 or client 𝐷).

Furthermore, a relevant scheme in the research field of PSI can be employed to protect the privacy of clients’ intersec-
ions (Takuma & Yanagisawa, 2013). This scheme ensures only the intersection cardinality is obtained without knowing the detailed
tems of the intersection. However, due to the complexity of this algorithm and the high communication costs, especially in federated
etworks, it is impractical to utilize this method in our problem that needs to be solved.

We next show the details of MinSim in SFSL, as shown in Algorithm 2. In the following text, the meaning of these notations
emains the same. At the initial stage, the cloud server randomly initializes the global model (Line 1). In each communication
ound, the cloud server selects 𝐾 group clients, and the cloud server samples the clients of 𝑟 teams in turn (Line 2) to participate
nd maintains an up-to-date set of the chosen clients. They are alive throughout the whole round. Next, the cloud server initiates
SU algorithm (as implemented in SFSL) for each team’s clients, which determines each team’s real index union sets (Line 4). The
eams in each group combine according to the 2-combinations approach, e.g.,

(𝑛∕𝑟
2

)

(Line 7). By averaging the similarity values of all
he combinations of 𝑛∕𝑟 teams, the similarity of one group can be determined (Line 10). It is inappropriate to select the group clients
ith the smallest similarity as the training clients in each communication round. The smallest group of clients is only a measure of

imilarity within a round. Without considering the similarity of clients from round to round. In another round, it may appear that
ost of the clients are the same. Repetitive client selection has a severe negative impact on training effectiveness and efficiency.

To eliminate the problem of repeated selection of some clients, we propose a sliding window mechanism to minimize clients’
imilarity values in different rounds. 𝑛𝑤 represents the size of the sliding window. Obtain the union of the real indexes of clients
ithin the sliding window, then calculate the similarity of all groups of clients in the current round with [𝐶∗

𝑡−𝑤 ∶𝐶∗
𝑡 ] respectively

Line 12). The clients with the smallest similarity value are selected as participants (Line 13). The MinSim algorithm output consists
f two parts. One is ∗

𝑡 represents one group of clients ID with the least similarity among 𝑘 groups clients. The other is  (∗𝑡 ), which
s the union set of clients indexes corresponding to ∗

𝑡 .

.2. Diversity maximization

We introduce the last MaxDiv module. In the e-commerce recommendation model, a row index of the global model corresponds
o a client’s item in local data. In order to improve the training efficiency of the global model 𝑊 , it is essential to ensure that the
ocal data of the selected clients in each round cover as many global model indexes as possible. We design two targets of the MaxDiv
lgorithm as follows:

• Target 1: Local data of clients sampled within and between rounds can cover the maximum number of data items.
8

• Target 2: An index of the client data cannot be leaked during one or multiple rounds of sampling.
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Algorithm 2 The MinSim Algorithm

Input: 𝑊 , 𝐾, 𝑘
𝑡 , 𝑇 , 𝑛

utput: ∗
𝑡 and corresponding  (∗𝑡 )

1: for k = 1, 2, … , 𝐾 do
2: for each team q = 1, 2, … , 𝑛∕𝑟 do
3: Randomly select 𝑟 clients to form 𝑘

𝑡 (𝑞)
4: Launch the PSU algorithm, obtain the  (𝑘𝑡 (𝑞))

5: end for

6: 𝑘
𝑡 ←

𝑛∕𝑟
⋃

𝑞=1
 (𝑘𝑡 (𝑞))

7: for each pair of team 𝑗 ∈
(𝑛∕𝑟

2

)

do
8: 𝑠𝑖𝑚𝑗

𝑘 = 𝐽 (𝐶𝑘
𝑡 (𝑞1),𝐶𝑘

𝑡 (𝑞2)

9: end for
10: 𝑠𝑖𝑚𝑘 ←

∑𝑛∕𝑟
𝑗=1 𝑠𝑖𝑚

𝑗
𝑘

11: end for
12: 𝑠𝑖𝑚𝑤 = 𝐽 ([𝐶∗

𝑡−𝑤 ∶𝐶∗
𝑡 ],𝐶𝑘

𝑡 )
13: return ∗

𝑡 = min
{

𝑠𝑖𝑚𝑘 + 𝑠𝑖𝑚𝑤
}

and  (∗𝑡 )

In SFSL, the PSU algorithm mainly prepares data for the index set randomization of each client. Before getting into MaxDiv, we
first briefly review the definition of PSU. The PSU is a special case of secure two-party computation. It allows two parties holding
sets 𝑋 and 𝑌 respectively, to compute the union 𝑋 ∪ 𝑌 without revealing anything else. Its most important characteristic is that
t can obtain the union of multiple users while protecting their privacy. This is consistent with the Target 2 designing the MaxDiv
lgorithm.

Due to the feasibility of the PSU for SFSL and the objective for client selection, we propose MaxDiv as shown in Algorithm 3.
Every group of clients in one round is first randomly sampled by the cloud server (Line 2). Then, the cloud server starts the PSU
algorithm to obtain the union of each group client’s real index of local data (Line 3). Afterward, the cloud server can get the
cardinality of every group of clients. Note that, All cardinality values used in this paper are calculated by Min–max normalization.
Here, it is not necessary to calculate the 2-combination for 𝐐 because the greater the cardinality of the union, the more global
indexes are trained at one round. Get the union of the real indexes of clients in the sliding window by searching the historical
rounds (e.g., [𝐶∗

𝑡−𝑤 ∶𝐶∗
𝑡 ]), then calculate the similarity between 𝐶𝑘

𝑡 with the history round clients respectively (Line 5), and the
group with the smallest similarity value are selected as participants for round t (Line 6). The MaxDiv algorithm output also consists
of two parts. One is ∗

𝑡 represents one group of clients ID with the largest coverage degree among 𝑘 groups clients. The other is
 (∗𝑡 ), which is the union set of clients indexes corresponding to ∗

𝑡 .

Algorithm 3 The MaxDiv Algorithm

Input: 𝑊 , 𝐾, 𝑘
𝑡 , 𝑇 , 𝑛

utput: ∗
𝑡 and corresponding  (∗𝑡 )

1: for each group client k = 1, 2, … , 𝐾 do
2: Randomly select 𝑛 clients to form 𝑘

𝑡 (𝑞)
3: Launch the PSU algorithm, obtain the union of real index sets of 𝐶𝑘

𝑡

4: Calculate the cardinality of 𝐶𝑘
𝑡 , denoted as 𝐶𝑎𝑟𝑑𝑘

5: end for
6: 𝑠𝑖𝑚𝑤 = 𝐽 ([𝐶∗

𝑡−𝑤 ∶𝐶∗
𝑡 ],𝐶𝑘

𝑡 ))
7: return ∗

𝑡 = max
{

𝐶𝑎𝑟𝑑𝑘 − 𝑠𝑖𝑚𝑤
}

and  (∗𝑡 )

Algorithm 4 The MaxDiv+MinSim Algorithm
1: for each group client k = 1, 2, … , 𝐾 do
2: Randomly select 𝑛 clients to form 𝑘

𝑡 (𝑞)
3: Launch the PSU algorithm, obtain the union of real index sets in 𝑘

𝑡

4: Calculate 𝑠𝑖𝑚𝑘 (Refer to lines 7–10 in Algorithm 2) and corresponding coverage cardinality of  (𝑘𝑡 ), denoted as 𝐶𝑎𝑟𝑑𝑘
5: end for
6: 𝑠𝑖𝑚𝑤 = 𝐽 ([𝐶∗

𝑡−𝑤 ∶ (𝐶∗
𝑡 )], (𝐶𝑘

𝑡 ))
7: 𝑈𝑡𝑖𝑙𝑖 = 𝐶𝑎𝑟𝑑𝑘∕(𝑠𝑖𝑚𝑘 + 𝑠𝑖𝑚𝑤) (𝑖 ∈ 𝐾, 𝑤 ∈ 𝑊 )
8: return ∗

𝑡 = max
{

𝑈𝑡𝑖𝑙𝑖
}

(𝑖 ∈ 𝐾) and  (𝐶∗
𝑡 )
9
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Table 2
Statistics of three datasets.

Dataset # Clients # Samples Samples per client

MovieLen 1,971 563,706 285
Taobao 3,349 524,718 157
Amazon 2,806 392,841 140

5.3. Joint similarity–diversity optimization

During our experiments, using a similarity minimization-based sampling scheme, we found that it easily tends to select clients
ith rarer data and corresponding features. On the one hand, these characteristics significantly improve the model’s accuracy. On

he other hand, clients with rare data have a generally small amount of local data, which means fewer rows of the global model
re updated in this round. Alternatively, a coverage maximization-based client sampling scheme can maximize the rows of the
lobal model updating. However, many local data of sampling clients are overlapping, and the features associated with these data
re also overlapping. Namely, simply maximizing diversity also fails to achieve the maximum sampling efficiency. It can also slow
own the training process. Considering the above factors, it is imperative that we consider the combination of two schemes to
aximize the efficiency of global model updates, e.g., striking a balance between maximizing the number of global model update

ows and maximizing the inclusion of new local data features. Consequently, we developed a joint scheme named MaxDiv+MinSim
to ensure high sampling efficiency while achieving the optimal balance. Therefore, we introduce a new index to measure the quality
of sampling. It can be expressed as:

𝑈𝑡𝑖𝑙𝑖𝑖 =
𝐶𝑎𝑟𝑑𝑘

𝑠𝑖𝑚𝑘 + 𝑠𝑖𝑚𝑤
(6)

𝑠𝑖𝑚𝑘 measures the similarity diversity of clients in a group, and 𝑠𝑖𝑚𝑤 evaluates the inter-round clients’ similarity. We use the
arithmetic sum of 𝑠𝑖𝑚𝑘 and 𝑠𝑖𝑚𝑤 to represent the total similarity diversity of a group of sampled clients. According to the Eq. (6),
The group with the largest 𝑈𝑡𝑖𝑙𝑖 can achieve local optimal unbiased coverage. In other words, it maximizes the efficiency of local
data feature selection.

6. Experiments

In this section, we conduct extensive experiments to evaluate the effectiveness of our heuristic client selection design on two
real-world datasets.

6.1. Datasets

We constructed three different types of training datasets for different tasks. One is MovieLens-10M dataset (Harper & Konstan,
2015), the other is public Taobao datasets (Alimama, 2018) from Tianchi Big Data Crowd Intelligence Platform, and the last is
Amazon Electronics datasets. We use the public industrial datasets in Alibaba, which were built from the 8 day impressions and
clicked logs of Taobao users during May 6–13, 2017. The Taobao dataset contains 26 million records for 1.14 million users. For
a certain Taobao user, we leverage his/her click behaviors in the previous 7 days as historical data to predict his/her click and
nonclick behaviors in the following 1 day. Amazon datasets are also processed in the same way.

We perform a rating classification task over the MovieLens 10M dataset, a data set commonly used in international publicity.
It contains 10 million ratings and 95 thousand tags applied to 10 thousand movies by 71 thousand users of the online movie
recommendation service. All selected users had rated at least 20 movies. We randomly selected a certain proportion of data from
the original data set as the experimental object. Statistics of the three datasets are as shown in Table 2.

6.2. Model, parameters and metric

Our recommendation model is based on the Deep Interest Network (DIN) model (Zhou, Zhu, Song, et al., 2018) proposed by
Alibaba, where the embedding dimension is set to 18. For each client’s local training, we apply mini-batch stochastic gradient
descent as the optimizer initially set the learning rate to 0.01 and further applies exponential decay with the decay rate of 0.999
per communication round. The batch size and the local epoch number are 2 and 5, respectively. For the cloud server’s global
testing, we set the test batch size to 1,024 and adopt loss and accuracy as metrics. We focus on the round-to-loss performance and
round-to-accuracy of model training tasks on the testing set. For each experiment, we report the mean value over 5 runs. For MaxDiv,
MinSim and MaxDiv+MinSim, parameter 𝐾 is set to 20. Specifically, the parameter 𝑟 on MinSim is randomly set to 4, i.e., each group
has 4 teams, and each team has 5 clients.
10
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Fig. 4. Training loss and accuracy of SFSL, MinSim, MaxDiv and MaxDiv+MinSim on the MovieLens.

.3. Experimental setup

SFSL is designed to operate in large machine-learning recommendation task deployments with billions of mobile devices. It is
nfeasible to deploy such a billion-scale system considering it prohibitively expensive. Thus, we conduct an evaluation on SFSL where
e extend the SFSL implementation of the random sampling module to fit our requirements. We resort to a Linux workstation with
ne NVIDIA GeForce RTX 2080 Ti graphics card. The workstation is operated on Ubuntu 20.04 64-bit and equipped with 10 Intel(R)
ore(TM) i9-10900X@3.3 GHz and 32 GB memory. We simulate 1917 clients for MovieLens-10M datasets and 3349 clients for the
libaba dataset.

We implemented the prototypes of our sampling methods and the baseline SFSL in Python 2.7.16. We followed the work of
ynchronous architecture on top and implemented a communication module between the cloud server and each client with standard
ocket programming in Niu et al. (2020). We also used TensorFlow 1.12.0 to implement DIN. We mainly used PyCryptodome
.7.3 to implement the secure aggregation protocol in Bonawitz, Ivanov, Kreuter, et al. (2017). To support modular addition
nderlying secure aggregation, we performed float-to-integer conversion for each client’s submodel or full model update with
tochastic quantization (Suresh, Felix, Kumar, et al., 2017), where the quantization level is set to 215.

.4. Evaluation analysis

We next analyze our experiment results from the following four aspects.
Model accuracy and convergence. We compare SFSL with MinSim, MaxDiv and MaxDiv+MinSim. For the rating classification on

the MovieLens dataset, we plot the test accuracy and training loss in Fig. 4(a) and Fig. 4(b) respectively. As shown in Fig. 8, we
observe that both MaxDiv and MinSim are always superior to random sampling in training loss and test accuracy. In each round of
ampling, more information is contained in the local data of clients chosen by MaxDiv and MinSim, which contributes to the accuracy
nd convergence speed of the global model. We also noticed that MaxDiv+MinSim always outperforms MinSim and MaxDiv. This
s mainly due to the fact that MaxDiv+MinSim considers both information redundancy (similarity) and the information volume
coverage). Thus, the quality of clients selected by MaxDiv+MinSim is relatively higher. As a result, MaxDiv+MinSim can train more
ata in one round, and the global update rate is faster than random sampling. For the CTR prediction on the Alibaba Taobao dataset,
s shown in Fig. 5, MaxDiv, MinaSim and MaxDiv+MinSim still perform better than the random sampling scheme in loss and accuracy.
ore importantly, our optimal sampling strategy is significantly better than random sampling in large-scale SFSL scenarios. In Fig. 6,
mazon data shows similar results. According to Tables 3–5, our heuristic sampling method can improve model performance in the
ame number of rounds. That is, the convergence rate of the global model is much faster than that of the random algorithm.

Quantitative results are shown in Figs. 7, 8 and 9, wherein significance markers are computed by Student’s t-test. Totally different
arkers indicate there is a significant difference between two methods on the dataset with confidence level 95%. For example, ‘‘a’’,

‘ab’’, ‘‘bc’’ means that there is no significant difference between ‘‘a’’ and ‘‘ab’’, but ‘‘a’’ and ‘‘bc’’ are significantly different. (See
igs. 5 and 6).
Computation overhead. We first demonstrate the computation overhead of our method and select SFSL as a baseline. The

ore union data clients are involved in within each group, the more computation resources they consume. Owing to the powerful
omputing power of the cloud server, it can completely cover all computing expenses. One of the most critical aspects of our method
s the separation of samples into multiple groups, which also incurs the cost of repeated calculations for each client. As a consequence,
e need to overcome the disadvantage of the high computing cost of the clients to optimize the computing time, e.g., repetition
f computation caused by being selected multiple times. On the one hand, although mobile devices are highly parallel in practice,
arallel in SFSL refers to a round of random sampling clients will execute in parallel.

We can, however, perform finer-grained parallelism among small teams in our scheme because of the nature of the small teams.
n the other hand, in order to further accelerate the speed of local computations on the client side, we allowed each client to
erform the computation task only once when it was selected for the first time, and the intermediate results will be stored locally.
hen, it is optional to rerun the compute procedure again in the following sampling for clients, but rather to upload the results to
11

he cloud directly.
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Fig. 5. Training loss and accuracy of SFSL, MinSim, MaxDiv and MaxDiv+MinSim on the Alibaba Taobao dataset.

Fig. 6. Training loss and accuracy of SFSL, MinSim, MaxDiv and MaxDiv+MinSim on the Amazon dataset.

Table 3
Taobao, 90% accuracy.
𝑛 20 40 60 80 100

MaxDiv+MinSim 30 32 31 31 33
MaxDiv 38 37 36 39 35
MinSim 30 48 48 46 47
SFSL 38 42 43 41 42

Table 4
MovieLens, 90% accuracy.
𝑛 20 40 60 80 100

MaxDiv+MinSim 32 30 31 32 31
MaxDiv 31 37 36 39 35
MinSim 45 48 50 51 49
SFSL 42 45 44 46 45

Table 5
Amazon, 90% accuracy.
𝑛 20 40 60 80 100

MaxDiv+MinSim 31 30 31 32 30
MaxDiv 30 35 33 32 34
MinSim 43 45 47 50 46
SFSL 40 41 43 42 44

Accordingly, the total computation overload of our sampling in one sampling round comprises the computing time of one team
ultiplied by the number of groups 𝐾, and then the time spent on local training. As the client’s other computing time is tiny and

does not significantly contribute to the overall computing overhead, it is not included in our computation evaluation. We measured
the computational cost based on Taobao and MovieLens datasets, respectively.

We set the number of groups 𝐾 to 20 and each group consisting of 40 clients, set the size of sliding window 𝑊 to 3, and set the
number of teams 𝑟 to 8, each team consisting of 5. Training hyper-parameters are set in the same way as previously described. As
shown in Fig. 7(a), Fig. 8(a) and Fig. 9(a), we can see that compared with SFSL random sampling, our sampling methods can sharply
12

reduce the computation overhead. The reason can be explained by the team sampling mechanism used in each group selection. A
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Fig. 7. Computation overhead, communication overhead and global updated rows per round in our methods and the baseline SFSL for Alibaba Taobao dataset.

Fig. 8. Computation overhead, communication overhead and global updated rows per round in our methods and the baseline SFSL for MovieLens dataset.

Fig. 9. Computation overhead, communication overhead and global updated rows per round in our methods and the baseline SFSL for Amazon dataset.

ampling process is performed in parallel for all small teams of each group. For example, when the group consists of 100 clients,
ur method reduces an average 73.2% of the computation time than SFSL.
Communication overhead. The communication overhead of our method is demonstrated as follows, and SFSL is introduced as a

baseline. We observe that there are two aspects that contribute to the greatest cost of client communication overheads: (1) Multiple
transmissions of PSU protocol data, (2) Transmission of submodel gradient updated data. The reason is that the clients sampled by
MaxDiv each round are those client groups whose local data cover the most data. The more union data involved by clients in each
group, the larger the transmission space occupied. Compared to the random sampling of SFSL, multiple group sampling result in a
substantial increase in transmission overhead for each client. In order to alleviate the transmission pressure of the client, we have
optimized the procedure of PSU protocol. When each client executes the PSU protocol for the first time, it is necessary to save the
intermediate results locally. The client will be able to transmit the local intermediate results directly if one client is selected again
later.

The Parameters to be set here are the same as those for computation overhead evaluation. We tested the overall average clients’
transmission overload per training round sampling in Taobao and MovieLens datasets, respectively. The transmission overload at
one time is the transmission cost of the PUS for a small team multiplied by the number of groups and plus the transmission cost of
gradient aggregation and updates.

As shown in Fig. 7(b), Fig. 8(b) and Fig. 9(b), the main observation from the figures is that the communication overhead per
client in all sampling methods increases with the number of chosen clients. On the one hand, the communication complexity grows
linearly with the number of chosen clients. On the other hand, it is increasing with union data covered by each group of clients.
Additionally, we can see that the overall communication overhead of our method is larger than random sampling in SFSL. As a
result, we can conclude that the clients selected by heuristic algorithms are more effective than random sampling on the whole. By
sacrificing a small part of transmission space, our proposed algorithm can achieve higher sampling quality, faster convergence, and
13

higher accuracy at the same round compared to SFSL.
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Global model updating evaluation. As a final step, we estimate the efficiency of the global model updating based on the chosen
lients local data union in each round. To determine the degree of update coverage of the central model after a round of aggregation,
e measure the number of rows of the gradient of the updated global model. Accordingly, we counted the total number of rows
ith a gradient update of nonzero after aggregation, as shown in Fig. 7(c), Fig. 8(c) and Fig. 9(c). The maximum number of updated

ows is achieved by MaxDiv in three datasets. This is mainly because MaxDiv is mainly based on the size of the union of clients
ndex sets. In the judgment process, the group with the largest set size is usually selected as the training client. That is to say, the
arger the set size, the more local data to participate in the training, so the more global model updates rows. However, it does not
each the highest accuracy. The reason for the least accuracy for MaxDiv is the result of more overlapping feature training points

among the clients. In this context, it should be noted that the training effectiveness of the global model is not only affected by the
number of updated rows but is also influenced by the characteristics of data sampling.

7. Conclusion and discussions

To the best of our knowledge, we propose the first effective and privacy-preserving heuristic selection solution for SFSL to
obtain models with high accuracy and fast convergence speed when there are billion-scale clients. We first formulate the client
selection problem using the unbiased coverage concept. By jointly optimizing metric diversity and similarity, we propose a new
heuristic framework for multi-group customer selection that is NP-hard. Participating clients’ privacy is protected through private
set operations (PSI and PSU). Through experiments on two real-world datasets, the results indicate that our algorithm outperforms
SFSL in terms of accuracy, and convergence speed. It also offers significant computing benefits while providing comparable
communication performance to SFSL.

We finally discuss the limitation of our schemes. As presented by our methods, the performance of MaxDiv with our proposed
ptimal client sampling strategy is in between that with MaxDiv+MinSim and MinSim. For all datasets, the MinSim sampling strategy

performs slightly better than but is still competitive with the MaxDiv strategy regarding the number of communication rounds.
During the experiment, we found that in the sampling process, the number of MaxDiv samples is often larger than that of MinSim.
Although the diversity of data increases, the number is smaller, which also leads to the reduction of training quality, which is also
why MaxDiv+MinSim has the highest quality. We now discuss the issues as the size of the full index set (which controls the size of
the full model) and the total number of clients scale further to billions in practice. First, the baseline SFSL, depending on the random
selection method, will be prohibitively inefficient to be applicable. Second, we analyze our heuristic strategies, which relives the
dependence on a large number of communication rounds, and involve only a constant number of diverse clients in each round.
Thus, no additional overhead will be incurred in our strategies due to the disadvantages caused by random. Another problem is
that mobile phones and communication resources are scarce in the actual scenario. It is usually assumed that the mobile device is
asleep at night before the above process is executed. This will limit the update frequency of the model. The follow-up optimization
strategy of this scheme needs to be further studied, including how to train asynchronously and how to update quickly. We will also
further study how to migrate our scheme to the scene of pictures, which supports many applications of computer vision.

CRediT authorship contribution statement

Panyu Liu: Conceptualization, Methodology, Original draft preparation. Tongqing Zhou: Conceptualization, Methodology,
Original draft preparation, Reviewing and editing. Zhiping Cai: Reviewing and editing. Fang Liu: Conceptualization, Validation.
Yeting Guo: Investigation, Writing, Data curation.

Data availability

Data will be made available on request.

Acknowledgment

This work is supported by the National Key Research and Development Program of China (2020YFC2003404), the National
Natural Science Foundation of China (Nos. 62072465, 62172155, 62102425, 62102429, U22B2005), the Science and Technology
Innovation Program of Hunan Province (Nos. 2022RC3061, 2021RC2071), and the Natural Science Foundation of Hunan Province
(No. 2022JJ40564).

References

Alain, G., Lamb, A., Sankar, C., et al. (2015). Variance reduction in SGD by distributed importance sampling. arXiv preprint arXiv:1511.06481.
Alimama (2018). Ad display/click data on taobao.com. URL https://tianchi.aliyun.com/dataset/dataDetail?dataId=56.
Allen-Zhu, Z., Qu, Z., Richtárik, P., et al. (2016). Even faster accelerated coordinate descent using non-uniform sampling. In International conference on machine

learning (pp. 1110–1119). PMLR.
anabilah, S., Aloqaily, M., Alsayed, E., et al. (2022). Federated learning review: Fundamentals, enabling technologies, and future applications. Information

Processing & Management, 59(6), Article 103061.
onawitz, K., Ivanov, V., Kreuter, B., et al. (2017). Practical secure aggregation for privacy-preserving machine learning. In Proceedings of the 2017 ACM SIGSAC

conference on computer and communications security (pp. 1175–1191).
14

http://arxiv.org/abs/1511.06481
https://tianchi.aliyun.com/dataset/dataDetail?dataId=56
http://refhub.elsevier.com/S0306-4573(22)00312-0/sb3
http://refhub.elsevier.com/S0306-4573(22)00312-0/sb3
http://refhub.elsevier.com/S0306-4573(22)00312-0/sb3
http://refhub.elsevier.com/S0306-4573(22)00312-0/sb4
http://refhub.elsevier.com/S0306-4573(22)00312-0/sb4
http://refhub.elsevier.com/S0306-4573(22)00312-0/sb4
http://refhub.elsevier.com/S0306-4573(22)00312-0/sb5
http://refhub.elsevier.com/S0306-4573(22)00312-0/sb5
http://refhub.elsevier.com/S0306-4573(22)00312-0/sb5


Information Processing and Management 60 (2023) 103211P. Liu et al.

N

P

Q
R
S

T
V

W

W

Boratto, L., Fenu, G., & Marras, M. (2021). Connecting user and item perspectives in popularity debiasing for collaborative recommendation. Information Processing
& Management, 58(1), Article 102387.

Cai, J. r., Gundermann, T., Hartmanis, J., et al. (1988). The boolean hierarchy I: Structural properties. SIAM Journal on Computing, 17(6), 1232–1252.
Chai, Z., Ali, A., Zawad, S., et al. (2020). TiFL: A tier-based federated learning system. In Proceedings of the 29th international symposium on high-performance

parallel and distributed computing (pp. 125–136).
Chekuri, C., & Kumar, A. (2004). Maximum coverage problem with group budget constraints and applications. In Approximation, randomization, and combinatorial

optimization. Algorithms and techniques.
Chen, W., Horvath, S., & Richtarik, P. (2020). Optimal client sampling for federated learning. arXiv preprint arXiv:2010.13723.
Cho, Y. J., Wang, J., & Joshi, G. (2020). Client selection in federated learning: Convergence analysis and power-of-choice selection strategies. arXiv preprint

arXiv:2010.01243.
De Cristofaro, E., Gasti, P., & Tsudik, G. (2012). Fast and private computation of cardinality of set intersection and union. In Proc. of ACNS (pp. 218–231).

Springer.
De Cristofaro, E., & Tsudik, G. (2010). Practical private set intersection protocols with linear complexity. In Proc. of FC (pp. 143–159). Springer.
Ferguson, T. S. (1989). Who solved the secretary problem? Statistical Science, 4(3), 282–289.
Fraboni, Y., Vidal, R., Kameni, L., & Lorenzi, M. (2022). A general theory for client sampling in federated learning. In IJCAI 2022-31st international joint conférence

on artificial intellignce.
Gómez, E., Boratto, L., & Salamó, M. (2022). Provider fairness across continents in collaborative recommender systems. Information Processing & Management,

59(1), Article 102719.
Guo, Y., Liu, F., Cai, Z., et al. (2021). PREFER: Point-of-interest recommendation with efficiency and privacy-preservation via federated edge learning. Proceedings

of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 5(1), 1–25.
Hao, M., Li, H., Luo, X., et al. (2019). Efficient and privacy-enhanced federated learning for industrial artificial intelligence. IEEE Transactions on Industrial

Informatics, 16(10), 6532–6542.
Harper, F. M., & Konstan, J. A. (2015). The movielens datasets: History and context. ACM Transactions on Interactive Intelligent Systems (TiiS), 5(4), 1–19.
Hu, L., Li, C., Shi, C., et al. (2020). Graph neural news recommendation with long-term and short-term interest modeling. Information Processing & Management,

57(2), Article 102142.
Ji, S., Jiang, W., Walid, A., & Li, X. (2021). Dynamic sampling and selective masking for communication-efficient federated learning. IEEE Intelligent Systems.
Katharopoulos, A., & Fleuret, F. (2018). Not all samples are created equal: Deep learning with importance sampling. In International conference on machine learning

(pp. 2525–2534). PMLR.
Khodadadian, S., Sharma, P., Joshi, G., & Maguluri, S. T. (2022). Federated reinforcement learning: Linear speedup under Markovian sampling. In International

conference on machine learning (pp. 10997–11057). PMLR.
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